bsxplorer.RegionStat.categorise
- RegionStat.categorise(context: Literal['CG', 'CHG', 'CHH'] | None = None, p_value: float = 0.05, min_n: int = 0, save: str | Path | None = None) tuple[polars.dataframe.frame.DataFrame, polars.dataframe.frame.DataFrame, polars.dataframe.frame.DataFrame] [source]
Categorise regions as BM (Body Methylation), IM (Intermediate Methylated) and UM (Undermethylated) according to Takuno and Gaut
E.g. for CG: \(P_{CG}<0.05, P_{CG}\geq0.05, P_{CG}\geq0.05\ and\ N_{CG}\geq20\)
- Parameters:
context – Methylation context (CG, CHG, CHH).
p_value – P-value for operation.
min_n – Minimal counts for cytosines methylated in selected context.
save – Path where files with BM, IM, UM genes will be saved (None if saving not needed).
- Returns:
BM, IM, UM
pl.DataFrame
- Return type:
tuple[pl.DataFrame, pl.DataFrame, pl.DataFrame]